On simple double zeros and badly conditioned zeros of analytic functions of n variables
نویسندگان
چکیده
We give a numerical criterion for a badly conditioned zero of a system of analytic equations to be part of a cluster of two zeros.
منابع مشابه
Domain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملComputing Zeros of Analytic Functions via Modiied Moments Based on Formal Orthogonal Polynomials Computing Zeros of Analytic Functions via Modiied Moments Based on Formal Orthogonal Polynomials Computing Zeros of Analytic Functions via Modified Moments Based on Formal Orthogonal Polynomials
We consider the problem of computing all the zeros of an analytic function that lie in the interior of a Jordan curve, together with their respective multiplicities. Our approach uses modiied moments based on formal orthogonal polynomials. Numerical experiments indicate that it is far superior to classical approaches, which consider the usually ill-conditioned map from the Newton sums to the un...
متن کاملSaddle points in the chaotic analytic function and Ginibre characteristic polynomial
Comparison is made between the distribution of saddle points in the chaotic analytic function and in the characteristic polynomials of the Ginibre ensemble. Realising the logarithmic derivative of these infinite polynomials as the electric field of a distribution of coulombic charges at the zeros, a simple mean-field electrostatic argument shows that the density of saddles minus zeros falls off...
متن کاملLINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS
We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
متن کاملInequalities for the polar derivative of a polynomial with $S$-fold zeros at the origin
Let $p(z)$ be a polynomial of degree $n$ and for a complex number $alpha$, let $D_{alpha}p(z)=np(z)+(alpha-z)p'(z)$ denote the polar derivative of the polynomial p(z) with respect to $alpha$. Dewan et al proved that if $p(z)$ has all its zeros in $|z| leq k, (kleq 1),$ with $s$-fold zeros at the origin then for every $alphainmathbb{C}$ with $|alpha|geq k$, begin{align*} max_{|z|=...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 70 شماره
صفحات -
تاریخ انتشار 2001